The full-length Saccharomyces cerevisiae Sgs1 protein is a vigorous DNA helicase that preferentially unwinds holliday junctions.

نویسندگان

  • Petr Cejka
  • Stephen C Kowalczykowski
چکیده

The highly conserved RecQ family of DNA helicases has multiple roles in the maintenance of genome stability. Sgs1, the single RecQ homologue in Saccharomyces cerevisiae, acts both early and late during homologous recombination. Here we present the expression, purification, and biochemical analysis of full-length Sgs1. Unlike the truncated form of Sgs1 characterized previously, full-length Sgs1 binds diverse single-stranded and double-stranded DNA substrates, including DNA duplexes with 5'- and 3'-single-stranded DNA overhangs. Similarly, Sgs1 unwinds a variety of DNA substrates, including blunt-ended duplex DNA. Significantly, a substrate containing a Holliday junction is unwound most efficiently. DNA unwinding is catalytic, requires ATP, and is stimulated by replication protein A. Unlike RecQ homologues from multicellular organisms, Sgs1 is remarkably active at picomolar concentrations and can efficiently unwind duplex DNA molecules as long as 23,000 base pairs. Our analysis shows that Sgs1 resembles Escherichia coli RecQ protein more than any of the human RecQ homologues with regard to its helicase activity. The full-length recombinant protein will be invaluable for further investigation of Sgs1 biochemistry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Saccharomyces cerevisiae Sgs1 helicase efficiently unwinds G-G paired DNAs.

The Saccharomyces cerevisiae Sgs1p helicase localizes to the nucleolus and is required to maintain the integrity of the rDNA repeats. Sgs1p is a member of the RecQ DNA helicase family, which also includes Schizo-saccharomyces pombe Rqh1, and the human BLM and WRN genes. These genes encode proteins which are essential to maintenance of genomic integrity and which share a highly conserved helicas...

متن کامل

Bipartite structure of the SGS1 DNA helicase in Saccharomyces cerevisiae.

SGS1 in yeast encodes a DNA helicase with homology to the human BLM and WRN proteins. This group of proteins is characterized by a highly conserved DNA helicase domain homologous to Escherichia coli RecQ and a large N-terminal domain of unknown function. To determine the role of these domains in SGS1 function, we constructed a series of truncation and helicase-defective (-hd) alleles and examin...

متن کامل

BLM Ortholog, Sgs1, Prevents Aberrant Crossing-over by Suppressing Formation of Multichromatid Joint Molecules

Bloom's helicase (BLM) is thought to prevent crossing-over during DNA double-strand-break repair (DSBR) by disassembling double-Holliday junctions (dHJs) or by preventing their formation. We show that the Saccharomyces cerevisiae BLM ortholog, Sgs1, prevents aberrant crossing-over during meiosis by suppressing formation of joint molecules (JMs) comprising three and four interconnected duplexes....

متن کامل

Association of yeast DNA topoisomerase III and Sgs1 DNA helicase: studies of fusion proteins.

The Sgs1 protein of the budding yeast Saccharomyces cerevisiae is a member of the RecQ DNA helicase family that includes the human Bloom, Werner, and Rothmund-Thompson syndrome proteins. The N-terminal region outside the central DNA helicase core of Sgs1, particularly the part containing the first 100 amino acid residues of the 1,447-residue protein, is known to be functionally important and ha...

متن کامل

The Werner syndrome protein binds replication fork and holliday junction DNAs as an oligomer.

Werner syndrome is an inherited disease displaying a premature aging phenotype. The gene mutated in Werner syndrome encodes both a 3' --> 5' DNA helicase and a 3' --> 5' DNA exonuclease. Both WRN helicase and exonuclease preferentially utilize DNA substrates containing alternate secondary structures. By virtue of its ability to resolve such DNA structures, WRN is postulated to prevent the stall...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 285 11  شماره 

صفحات  -

تاریخ انتشار 2010